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AFIT/GST/ENS/93M-01

Abstract

The Generalized Lambda Distribution (GLD) is a four parameter function that is capable of
mimicking the behavior of a wide range of probability density functions (pdfs). Unfortunately, the
GLD presently cannot model every possible ty‘pe of pdf. Since the reasons for this limitation are
unknown, this thesis examines séveral potential problems in aﬁ attempt to expand ‘the range of
distributions the GLD can mimic.

We first present a discu:ssion of the behavior of'the algorithm (known as Powell’s Algorithm)
that is used to search for the appropriate GLD parameter values. In particular? we examine the
effect of using this unconstrained search précédure to find the parameters subject to a constraint
that ensures that the resulting pdf is valid. We also develop a reparameterizatior; ‘of th.c GLD that
creates an unconstrained search region. This does not expand the range of distributions the GLD
can mimic.

We then use an extensive numerical investigation to exanﬁne the set of distributions that
can be obtained from combinations of the GLD parameters. This examination allows us to expand
the range of pdfs that can be modeled using the GLI. We also inspect some pdfs that cannot be
modeled using the GLD, as well as present an alternative to the method of moments for determining

the parameter values, using the recently-developed concept of L-moments.

vii’




AN ANALYSIS OF THE
GENERALIZED LAMBDA DISTRIBUTION

1. Introduction

Today’s military is faced with a two-fold preblem. Becaﬁse of the end of the Cold War and
its résulting budgetary reductions, it must reduce its manpower in all career ﬁelds.. In addition,
since there is no longer a clearly-defined “enemy,” it mustI also be prepared to deal with a myriad
of potential conflicts and crises. For example, the military support for Operation Restore Hope, the .
1992-93 relief efforts in Somalia, had to be thoroughly planned and organized. Military planners
were facéd with the monumental task of orchestrating the movement of 0\‘/er 28,000 Marine and
Arfny troops, as well as providing for their logistical support in a country that had no established

government, infrastructure or means of feeding its own people.

Because of budget cuts, the planning involved in dealing with such situations must be accom-
plished by a smaller staff, in the same amount of time as before. Planners are forced to do more
with less and must therefore work more émciently. Any cost- or time—cutting measures that are

available must be implemented.

One such measure is the use of computer-aided simulations. As a result of the rapid improve-
ment in the capabilities of small computer systems, computer simulations that model changing,
complex, or unique situatiéns have become more practical and easier to implement. Planning for
contingencies such as Operation Restore Hope can be done in a ‘fraction of the time, and the soft-
ware used to analyze one scenario can be séved to model any othef similar world situation that

may arise in the future.

Simulation is useful in many military situations. It can be used to assess potential casualty

rates and mission timetables for large-scale military operations, such as Desert Storm, the 1992

Tv——— oo “y




Gulf War. It can also be used to examine situations tha® are difficult to model in the real world,,

such as the expected damage resulting from an ICBM strike,

The problem with simulation, however, is that many apphcations require one to develop
probabilistic modelslof various input variables, usually based on real-\\'orldidat,a. For these simu-
lations, information such as the lifetinic of a certain part, the number of troops noe(led._to secure
an airpo-rt, or the radiation pattern from a nuclear explosion is crucial in order to get results that
“mean something.” However, such information is rarely known with certainty. Instead, planners
usually have a bank of accumulated data from previous tests and experiences which they can use

to probabilistically describe the range of possible values for each of their variables of interest.

The probabilistic description of a continuous randor variable is usually summarized by its

_ probability density function (pdf). Many different pdfs, including those for such well-known dis- '

tributions as the Normal, Fxponential, and Weibull, are available to the modeler. Each pdf has
its own distinct shape (or shaves) and covers a specific range of values. Since most of these pdfs
are available in commercial simulation packages, the modeler must decide which of the various

distributions that are available best “fits,” or describes, his set of data.

An alternative to this decision is to use a distribution with a more generalized density function

“that is not limited to a small number of particular shapes, but can instead take on a wide variety

of different ones. The use of such a generalized function frees the modeler from having to decide
between two competing distributions and allows hin; the leeway to create an even better fit to the

data.

The Generalized Lambda Distribution (GLD) has juét such a density function. It was origi-
nally created by Ramberg and Schmeiser [12] for the purpose of efficiently r ‘odeling and generating
random variables for use in simulation studies. The GLD is comprised of four parameters, A;, )2,
A3, and A4, that act together to allow adjusiment of the location, scale, and shape of the density

function so that it is able to model different random variables. In order to fit the GLD to an




actual set of data, we need to determine appropriate values for the four. parameters. This is usu-
ally accomplished by first computing the first four san‘lpl? nioments (the mean, variance, skewness,
and kurtosis) of the data. We then use a computerized search routine to find the appropriate
combination of parameter values so that the restIJZting form of the GLD wil! have these same four

motnents,

Because of its ability to “match moments,” we can use the GLD to miniic the behavior
of most of the commonly-used pdfs simply by setting the four parameters to appropriate values.
Figure 1 shows the ranges cf these pdls in terms of their measures of skewness and kurtosis. Some

0 L. 2 3 -4
1 T T 1

Uniform
'

Impossible Area

Beta (U-Shaped)
S Region

Beta (MShaped) TSe. . \
\ Region S

Figure 1. Characterization of Various Distributions by Their Skewness and Kurtosis

distributions, such as the Uniform, Normal and Exponential, are represented by single points;

others, such as the Scudent’s t, Log-Normal and Gamma, are represented by curves; the three typesv




of h(*tz; distributions are represented by regions of values. The top right-hand region, denoted the
“Impossible Area,” contains skewness- kurtosis corubinations that will never be exhibited by any
pdf. The GLD, at present, can I“mimic” those pdfs fom_xd within the shaded region of Figure 1.
Obviously, all ‘)l;t some of the U- and J;b:llap(‘.li beta distributions can currenily be modeled using

the GLD.

In order to make the GLD a more effective tool, we wish to expand the shaded region of
Figure 1 beyond its current limits—ideally, all the way to the Impossible Area. Unfortunately, the
reasons for the GLD’s current limitation are unknown, and one of the objectives of this thesis is to

explore these limitations and develop means to overcome them.

There are three particular questions we can address in pursuit of this objective. One concerns
the behavior of the computerized search routine (known as Powell’s Algorithin) used in the moment-
matching process. This algorithm was originally designed for searches over unrest.ricte'd regions.
iowever, in the case of the GLD, two of the barameters, Az and Ay, are required to have the
same sign, thereby li.miting the range of possible values. We are uncertain of the behavior of our
particular implementation of Powell’s Algorithm as it encounters this restricted area. In order to get
a better understanding of this problem, we will perforin an examination of the algorithm’s behavior
as it approaches and attempts to cross the constraining boundaries. We will also examine some
technigues for elim&nating the problem altogether. These efforts should help us determine whether
the observed limitation on the GLD occurs as the result of inadequacies >in the implementation of

this search algorith

Second, previous research has shown that a pattern exists in the values of Az and A4 that pro-
duce certain combinations of skewness and kurtosis. This pattern suggests the hypothesis that the
fninimum possible value of kurtosis that the GLD can have—given a specified value of skewness—
occurs when A3 = 0. This implies that the GLD’s limitation might be a result of restrictions on

the possible values of its parameters. As a means of assessing the validity of this hypothesis, we




enhance its value for future simulation studies.

will examine the skewness and kurtosis values that result from different combinations of Az and
As. We hope that the insights garnered from this exercise will also enable us to determine if the

limitations on the GLD can be overcome,

Third, we will examine some of the distributions that can not be modeled by the GLD.
Although these cases may be important in mathematical circles, it is conjectured that they may
not have significant practical applications. Further examination will help determine whether this

is true or not.

As discussed previously, the GLD parameter values are ltraditionally ést.i;néted from the first
four moments of the data. However, the higher order sample moments (ske\vneés and kurtosis) are
highly variable und are, therefore, somewhat. untrustwortiny. Recent research has suggested that a
different approach. The use of L-moments could be used to replace these moments with potentially
more-stable measures. Thus, a secona objective of this thesis is to ‘develop t.,hese measures for the
GLD and revise the computer search routines to utilize this new method as an alternative to the

method of moments.

Figure 1 shows that the GLD can already be used as an effective tool for simulation analyses.
Hopefully this research will provide a deeper insight into the properties and limitations of the GLD.
By cor.clusively determining the limits of its range, as well as the types of distributions that can not

be duplicated using it, we will attempt to make the GLD an even more powerful tool and further




Il. Background

2.1 GLD Development

" Although most of the commonly-used continuous probability ciistributions are defined in
terms of their density functions, f(x), or cumulative distribution function~, ¥(x), it is equally valid
to define a distribution by its pefcentile function, if thgt percentile function exists. The percentile
func_iidn is simply the inverse of the distribution function, ie., R(p) = F~Y(p), or equivalently,
p = F(z). The percentile function, R(p), is used similarly to a distribution's cumulative density

T function (cdf), in that it determines the value, z = R(p), such that the probability that a randomn’

variable having this distribution takes a value less than z is P

The abiiity to express a random variable in terms of its percentile function is quite useful in’

Monte Carlo simulation studies. In particular, it is well known that if R is the percentile function

- of a‘contin‘uous probability distﬁbution and if the random \}ariablc U is nnifor’mly distributed on
the (0,1) intérval, then the transformation X = R(U) yields a continuous random variable with
percentile function R. Thus, since sources of uniform (0,1) pseudo-random variates are commonly
available, this zraﬁsformation yields a simplg method for generating p.seudo‘random variates from

distributions whose percentile functions are known and are computationally tractable.

Tukey [15] created a function, which he called the lambda function, in this manner. Tukey’s

function, which is valid for all non-zero A, can be written as

- R(p) = Ef;_(:l\_j)i, 0<p<l. ey

Filliben [2] used this function to approximate symmetric distributions with a wide range of
tailweights and noted that when A = 0.14, the lambda function resulted in a “good” approximation

to the standard normal distribution. He further noted that the logistic distribution results as




A — 0 while, for A = —1, the resulting function is approximately Cauchy. Filliben also presented a

complete discussion of the density functions that result for various valucs of A.

Ramberg, et al [13] generalized Equation 1 to a four-parameter distribution that could be
used to approximate a number of well-known symmetric and asymmetric distributions—noting, in
comparison, thai a close approximation to the standard normal results when Ay = 0, A, = 0.1975,
and A3 = Ay = 0.1350 [13:203). Their distribution is defined by the percentile function

Aa —_ 1 — /\4
R(p) =M + p_____________( ?)

0<p<l N )

The distribution defined by Equation 2 is referred to as the Generalized Lambda Distribution
(GLD). The GLD has also been referred to as the Ramberg-Schmeiser-Tukey (RST) distribution
in the literatixre (see, for example, Mykytka [9]). The parameters A; and X2 are location and scale
parameters, respectively, while A3 and A4 are shape parameters that jointly determine the skewness

and kurtosis of the GLD. When A3 = )4, the resulting density is symmetric.

Using the fact that z = F~!(p) = R(p), we can find the density function corresponding to

Equation 2 by noting -

_dF(z) _ dp _ [dR(D)\™'
o) = = 'dR(p)—< dp) '

which yields

dR(p)\ ! A
10=(%7) = e 0sest @

It shouid be noted that although A; does not appear explicitly in this expression, f(x) is indeed a

function of A; since it is defined in terms of R(p), which does depend on ;.

The cumulative distribution function of the GLD does not, in general, exist in a simple closed

form, but this should not be a cause of concern since it is also true of the normal distribution,




whose percéntilés are more difficult to compute. For the GLD, it is simple to obtain plots of the
distribution function by plotting p on the y-axis versus R{p) on the x-axis. Similarly, a plot of
the density function is obtained by .plotting f[R(p)] on the y-axis against R(p) on the x-axis, for
p ranging from zeﬂro to one. FORTRAN programs that compute R(p) va‘ndvf[R(p)] for s_peciﬁedv

lambda values are given in Mykytka [9:82-84].

2.2 Calculation of GLD Parameters

" 2.2.1 Statistics Background. » The four GLD parameters are linked to the distribution’s
first four central moments: the mean (p), vafiance (o?), skewnessv(a;;), and kurtosis (a4). For
readers unfamiliar with these concepts, this subsection will present a brief overview. A more
thorough explanatién of these concepts can be found in most statistics textbgoks. The info;‘mation

given below was taken from Mendenhall, Wackerly and Scheaffer [8].

The first moment about the origin describes the center of a pdf and is commonly referred to
as the mean (). The variance (¢2) is the second moment about the mean of a distribution and
dwcribe;s the “spread” if its pdf. Unfortunately, the mean and variance do not uuniquely define a .
pdf. Many different distributions can possess the same mean and variénce. Therefore, we must

utilize additional measures (such as skewness and kurtosis) to distinguish between different pdfs.

expected value of a random variable following that distribution, p = E(X). This is the average
value we would observe if we were to continually take samples from the distribution. For an
empirical data set with n observations, we can estimate u with the sample mean, X, which is

defined as follows

X=

SR

i=1

X yields the average value of the data set.




The variance gives a measure of how wide the distribution (or sample data set) is. It is defined
as the expected value of the square of the difference between a sample value and the mean of the
distribution, ¢ = E[(X - 1)2]. For sample data, this can be estimated using the sample variance

a%:

The higher order moments are defined similarly. The standardized third moment about the
mean, the skewness (a3), gives a measure of how symmetric the distribution is. It is defined as
the scaled expected value of the cube of the difference between a sample value and the mean of

> 3 .
the distribution, a3 = -E[Q—:—:—‘i-)——l, whete the ¢ term in the denominator is a scaling factor uscd to
maké a3 a dimensionless measure. For sample data sets,
y 1 Z;‘-l(xi - Y)S
az = —r—-———:s——————. )

n . &

If a distribution is symmetric about its mean (like the Normal distribution, for example), it will

have a skewness of zero.

The standardized fourth moment about the mean, the kurtosis (a4), is a measure of the

“tailweight” of the distribution. It can be roughly thought of as the number of values that lie in

the tails of a distribution. It is defined as the scaled expected value of the difference between a
sample value and the mean, taken to the fourth power, a; = M We again use a scaling

factor (o*) to make a4 a dimensionless measure. For sample data sets, a4 can be estimated using:

—n 4
dg = %Ei:l(xﬂ X) .

&

A lower value of a4 signifies that the distribution will have “thinner” tails than a distribution that

-possesses a larger value of ay.




both:

As mentioned previously, many different distributions can share the same mean and variancé.
Fortunately, a distribution’s measures 6f skewness and kurtosis are fairly unique, and therefore can
be used to distinguish it from other pdfs, as we saw in'Figure 1. Although we can only uniqu'e]yv
define a distribution using an infinite number of its moments, we will find that, in practice, using‘ i

just these first four moments will be sufficient for most purposes.

These four moments will be used to determine values for the four parameters of the GLD. By
setting the four A parameters to appropriate values, we will be able to duplicate many combinations

of mean, variance, skewness, and kurtosis.

2.2.2 Parameter Definitions.  Ramberg and Schmeiser [12] showed that for A\; = 0, the .

k*® moment of the GLD, when * exists, is given by

LIy .
HXﬂ:A?E:(OOAYm&M—ﬂ+Iin+n (4)

i=0

where the beta function is defined (as in [1:332]) by

I'(z)I'(y)

an=r@+w-

Since the beta function is undefined whenever either of its.arguments are negative, we must assure

Aa(k—-i)+1>0
and

Mi+120,

10




for all i < k. Therefore, the k*» moment does not exist whenever

min(A3, A) < —;Cl-. ‘ (5)

REGION 1
»()‘3<-l. .
A . >1)

No positive
moments
exist__

REGION 3 (A 3.4,>0)

all positive moments

exist
non-valid
densitics
-1 2 U4 1 2
! I — 3
! - first four moments exist
........ ——" _114 . .
- mean and variance exist
e iET
first moment non-valid
exists densities

No positive ineger
moments exist

REGION 4 (A 3,14>0)

exist

Figure 2. Regions of GLD in Az-A4 Space

The mathematical definition of the GLD that has been given does not ensure that it always

defines a legitimate probability distribution. A valid pdf must exhibit the following behavior:

f(z)>0, Vz

J5o f(z)dz = 1.

11




Schmeiser [14] determined that there are four regions for which the GLD exhibits such behavior.

These regions are depicted in A3-A4 space in Figure 2, and have been arbitrarily numbered 1, 2,

3, and 4. It can be shown that no positive moments exist in Regions 1 or 2 (see, for example,

[6:183-193]). Likewise, from equation 5, we can see that the first four moments exist in Region 4

only when both A3 and )4 are greater than’ —%. All positive moments exist in Region 3.

Using Equation 4, Ramberg and Schmeiser developed the following expressions for the mean,

variance, skewness, and kurtosis of the GLD:

14

Q
fl

a3

[ 7]

A
(A1, A2, As, Ag) = A + o
2

o B - A2
0°(A2, 23, 24) = I

C —-3AB +243

a®(A3, M) = sign(Az) - (B- A2)%

D - 4AC +6A%B — 34*
(B - A?)?

a*(h3, A) =

where A, B, C, and D are the following functions of A3 and A4:

14+ A3

1

14 )X

B = ——-——2[3(1+z\3,1+/\4)+—-L—

14 23

1

C = ——— =36(142X3,1+ X)) +36(1 + A3, 14+ 2)) -

14323

1427,

12

®

)

(10)
(11)

1 .
1+ 3\ (12)




) .
= ———47(1+3)3,1+ A4) +6ﬂ(1 + 223,14 2),)
144); .

) .
—48(1 + A3,1 43X ) 13
B(1+ A3, 14 4)+1+4A4 (13)

and sign(Az) will be either 1 or —1, depending on whether the Ay parameter is positive or negati\;e.

As the notation indicates, the skewness and kurtosis are functions of A3 and )4 alone. The
skewness, a3, is a function of unly A3 and A4 since, in Regions 3 and 4, the sign of A, is a'lways
the same as the sign of both A3 and Ay [9:20]. The variance, hov&cver, also depends on the shape
parameter Ay and the mean depends on all four parameters. The shaded region of Figure 1 shows

the different combinations of skewness and kurtosis that éan be ol_;tained from the GLD.

2.2.8 Techniques for Determining Parameter Values. The technique known as the method
of moments is the usual means of selecting the values of the GLD parameters. By choosing the
four parameter values appropriately, a wide range of distributions can be duplicated, as indicated

by the shaded portion of Figure 1. We choose the parameter values as follows:

1. Since the equations for the skewness and kurtosis, Equations 8 and 9, are functions of only -
A3 and A4, we first determlne the values of A3 and A4 that “match” the desired combination
of a3 and ay.

2. Since we now have values for A3 and A4, we use Equation 7 to find a value for A2 g0 that the
GLD has the desired variance.

3. Equation 6 is then used to find a value for A; so that we achieve the S:nsired mean as well.

Table 1. Parameter Determination Using the Method of Moments

H the values for g, 62, a3, and a4 are unknown, they must be estimated from the sample data.
The procedure outlined above can then used to determine the four lambda parameters, replacing

8, 02, a3, and a4 with the sample statistics X, o2, of, and dy.

It should be noted that the third and fourth sample moments, a3, and ay, are quite sensitive

to extreme observations (values of X; located more than iwo standard deviations from X) and the
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variability of these sample moments can be quite large. This can, in turn, result in a poor, or even
Aincorrect, GLD fit. Asa way of reduzing this variability, Hosking [3] presents an alternative to the
use of sample moments, that of L-moments. His L-moments are computed as linear combinal&io‘ns
of order statistics. When properly defined, these I. moments can be used in place of thé traditional
'sample moments. He has shown that L-moments produce a more powerful goodness-of-fit test of
Normality than do traditional moments [4]. We will consider the us;z of L-moments in selecting

the parameters of the GLD in Chapter VII.

Ramberg et al [13:210-214] provide a table of the four GLD parameter values for various
combinations of skewness and kurtosis. These tables only cover distributions with zero mean and

unit variance, but the transformatibns

4\1([‘,02) = /\;(0,1)-0’+ﬂ

A2(0, 1)

"2(/‘: a?) o

can easily be computed for cases when p # 0 and/or 02 # 1.

The calculations for finding the values of A3 and A4 via the method of moments, given specified

values of a3 and a4, are complicated. Several different techniques have been implemented. Mykytka
and Ramberg [10] and Mykytka [9] use non-linear programming methods to find the minimum

possible sum-of-squared errors between the calculated and desired values of a3 and ag:

Min  f(A3,A4) = (a3(As, Ad) — a3)® + (a4(A3, M) — a4)? (14)

subject to Az-Ag 2 0. ' - (1%)

Equation 15 insures that A3 and A4 lie in either Region 3 or Region 4. The minimization expressed

in Equation 14 is performed using Powell’s Algorithm for non-linear function minimization.
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The tables of Rambefg et al were originally developed by specifying desired values for ag
and ag4, then finding the éppropriat‘e values of A3 and A4 using a FORTRAN program to solve the
minimization problem described in Equation 14. These tables contain values of the four lambda
parameters for values of a3 between lzero and two (in increments of 0.1) and values of a4 in
increments of 02 For a given value of agz, the values for a4 tabled are the smallest values for
which the optimal value of the objective function, Equation 14, was approximately zerc;. Thus, for
a given value of a3, the table does not necessarily show the minimum possible value of (lx.; that is

theoretically possible, but only that for which an objective function value near zero was obtained.

Mykytka and Ramberg [10] provide a user-friendly FORTRAN program that will calculate
the four GLD parametér values for comb.inationg of skewness and kurtosis not given in the tables
of [13]. In addition, Hsu [5] has created a C++ program which calculates the four GLD parameters
for a given data set and then allows the user to visually “improve” the resulting fit to the data by

altering the value of one or more of the parameters.
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III. Thesis Objectives

In order for the GLD to be an effective probability distribution, useful for modeling a wide
variety of random variables, we desire that it to be able to “mimic” any possible c,onil)ination of
skewness and kurtosis. At present, it cannot do so. Mykytka [9] showed a tentative boundary
(reproduced here in Figure 1) for the range of aa—aq'comhiﬁations .that can be produced using the
GLD. This boundary is based on his tabulated results, which are also found in Ramberg et al[12].
However, as mentioned previously, these tabulated results only show combinations of a3 and ay

for which the numerical search procedure produced a s-lution with a near-zero objective function.

Therefore, we are not assured that additional combinations do not exist above this boixndary.

We wish to take steps to either confirm My‘kytka’s boundary or to ep{pand the GLD’s coverage
region. However, due to the complexity of the procédu‘rcs used to find the A3 and A; values that
correspond to a specified skewness-kurtosis combination, there are several potential problems that
could be limiting the range of distributions the GLD can mimic. Each of these problems will be
discussed in detail in the following ;hapters, along with possible methods for their elimination. We
may discover that none of these problems affect the GLD’s coverage region. If that is indeed the
case, the efforts outlined in this thesis will ﬁot be in vain. By thoroughly examining these concerns,

we will firmly establish the‘ limitations of the GLD, which will be of value to future researchers.

In Chapter 1V, we present an in-depth analysis of the particular implementation of Powell's
Algorithm used by Mykytka and Ramberg [10]. The algorithm was originally designed to scarch
over an unconstrained region, so we will concentrate on its behavior as it approaches the constraints
defined by Equation 15. We then examine the effects of the penalty function that is currently used
to enforce these boundaries. Finally, we describe possible remedies to the problems involved with
using Powell’s Algorithm. We analyze one possible solution in particular: a reparameterization of

the GLD parameters in order to create an unconstrained search region.
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In Chapter V, we present an analysis of soine 'poss'ible ]ifnila&ions of the (,}l,i,). Instead of
determining the values of /\;, and A4 that correspond to a particular az-ay combinét.ion. we instead
look at the values of a3 and ay that result from different combinations of Ay and A4. By examining
a wide range of A3-A4 combinations, we may be able to gain some insight about and expand the

limits on the GLD’s range.

Chapter VI examines some of the distributions t} .. are not presently covered by the GLD.
By examining these pdfs, wve wiil get a better grasp for the types of distributions we can not yet

model.

As mentioned previously, the variability of the higher-order sample moments can be quite
large, especially in small data sets. Because of this potential problem,l Chapter VII describes L_-
moments, an alternative to the use of the traditional sample moments. It provides a summary of
the GLD’s four L-moment equations, as well as some suggestions for measuring L-moments from a

empirical data set.

Finally, Chapter VIII summarizes the results of this research and suggests some possible paths

' for follow-on efforts.
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IV. Analysis of Powell’s Algorithm

{.1 Background

The search procedure used by Mykytka and Ramberg [10] to determine the optimal values
for A3 and A4 makes use of Powell’s Algorithm. This algorithm was originally designed for uncon-
strained non-linear function minimization. However, the GLD is constrained by the requirement

that A3 and X4 have the same sign:

,\3 . /\.1 > 0.

As previously mentioned, our objective is to minimize the sum-of-squared errors between the
desited and calculated ;'alues of a3 and a4 subject to this constraint (see Equations 14 and 15).
In the current implementation, “unacceptable” values—those combinations that bdo not satisfy
Equation 15—are eliminated from consideration by‘re‘placing their sum-of-squared errors with a

large penalty. We enforce this penalty by defining the objective function as

min Z = f(A3, )

where

Z= [(03(1\3, Aq) - a3)2 + (04(/\3,/\4) - 04)2]; Az - Mg >0

Z = 10; Az A <0

Since an appropriate “match” to the desired a3 and a4 values is produced only when the optimal
value of the objective is zero (practically interpreted as having an objective function value less than
some arbitrarily small value'), we can avoid “unacceptable” combinations of A3 and A4 by utilizing

this penalty.

1For example, the FORTRAN code presentcd in Mykytka and Ramberg [10] will warn the user of an unacceptable
match when the final value calculated for Z exceeds 0.0002.
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Unfortunately, we do not know how Powell’s Algorithin acts when faced with this constraint,
i.e., does the inclusion of the penalty force the search into inappropriate directions? Our concern
is that the penalty might possibly cause the search algoritinn to exhibit undesired or detrimental
behavior, which might limit the range of potential az-a4 combinations for which we can find

solutions.

" As noted earlier, the only valid combinations of A3 and A4 lie in Regions 3 and 4—regions

-that are mutually exclusive? (see Figure 2). What happens if our initial estimates of Az and A4
are in Region 3 when the actual result lics in Region 47 As Powell’s Algorithm‘ proceeds towards
(0,0) in the Az-A4 space, it cquldv be faced with the problem of facing a restricted region in each
potential direction of travel. What happens in this case? Can we be certain that the algorithr»

moves in the proper direction?

Some preliminary answers already exist. When using the FORTRAN program given by
Mykytka and Ramberg [10)], the user must input an initial “guess” at the values for A3 and A4.
Since A3 and A4 must have the sa.xme sign, their initial values must be either both positive or i.,th
negative. It can be shown that even if the initial guess is in the wrong region (for example, an
initial guess in Region 4 could be provided when the optimal solution actually Iigs in Region 3) the
‘algorithm will sometimes switch regions to find the optimal solution. On the other hand, due to

the nature of the algorithm’s search technique (which will be discussed in detail in Section 4.3), the

possibility ofjumping like this directly from one acceptable region directly to the other is slight. -

That is, although the algorithm sometimes does switch regions, it usually does not. If, in practice,
we do not achieve a satisfactory Z-value when starting in one region, we need simply apply the
algorithm a second time, changing our starting point to one in the opposite region and hopefully

producing a solution with a better objective function value.

2The point A3=X4= 0, although common to both regions, does not yield a valid GLD pdf.
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This behavior suggests that we could see some momentary attempts by the algorithm to
find potential solutions in the “forbidden zone” (f.e. combinations of Az and A4 that lie outside
of Regions 3 and 4 in Figure 2) as the algorithm attempts to cross from one region to the other.

What affect might this have on the search algorithm?

The more important cases for this concern are those where the optimal Az3-)4 solutions lie

very close to one of the “forf)idden zone” boqndaries. If we assume that our initial guess lies in
the proper region, we can reasonably expect that the magnitude of Z will be decreasing as Powell’s ' ,
Algorithm approaches its optimal solution (minimum Z-value). As the algorithin nears this optim.;il‘ - 7
point, its search might reach into the “forbidden zone.” The algorithm is suddenly faced with a ;
“large” increalse in the Z-value (namely, Z = 10) in that particular direction. Does this bias the . /
search in any way? Such a problem .might cause the search to proceed in an inappropriate direction
or prevent it from converging to a st;lution that lies near the constraining boundaries. As a result,
the algorithm might fail to converge to a solution with a non-zero objective funﬁtion valué and the

particular az-a4 combination would be considered to be infeasible, even though a valid solution

does indeed exist.

. 4.2 Methodology

To investigate this préglem, we will examine the behavior of the algorithm, step-by-step, e
as it proceeds near—or attempts to cross—the limiting boundaries. This will be accomplished
by altering the FORTRAN code of Mykytka and Ramberg [10] to print each of the intermediate

points in a particular search. By examining the intermediate steps generated by the algorithm as

it proceeds to its final solution, we can get a more complete understanding of its behavior and a

fuller confidence in its results.

We will also inspect the behavior of the aigorithm when we provide a starting value in the

“opposite” region. We know there are some cases where the algorithm does cross from one region
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" to the other in searching for its optimal value. By comparing the results of these searches to those
when starting points in the proper region are used, we will get an insight into the behavior of the

algorithm as it attempts to search for a solution in, or in the direction of, the “forbidden zone.”

In Section 4.4, we will examine cases where the cptimal A3 and A, solutions lie close to the
constraining boundaries. By examining the results of searches performed with and without the

penalty function, we will be able to evaluate the effect of the penalty function on the algbrithm.

We will use the tabulated values of Ramberg et al [13:210-214] as a source of test values for
this effort. In particular, we will be examining values near (or past) the point where their particular

implementatioﬁ of Powell’s Algorithm failed to converge. Although we will use the FORTRAN code

presented in Mykytka and Ramberg [10] instead of the code used to generate the tables in [13], the

two versions are nearly identical and extensive experience with the code suggests that we can be

confident that they will yield identical results.

4.8 Unconstrained Behavior of the Algorithm

As astarting point, we examine the search techniques used in Powell’s Algorithm. By studying
how the algorithm usually performs searches in an unconstrained space, we will hopefully be able
predict its behavior when it is presented with limiting boundaries. We will use Powell’s original

paper, [11}], as well as the FORTRAN code of Kuester and Mize [7], as references for this analysis.

Powell uses a variation of the method of minimizing a function of several variables by changing
only one parameter at a time. His method uses conjugate search directions at each iteration, which

results in a “fast” rate of convergence.
[:4

Each iteration of the algorithm consists of linear searches down n independent directions,
§1,82,. . .,&n, where n is the numher of variables for which we desire values. We start from the best
_ approximation of the minimum, po. Initially, the search directions are chosen to be in the direction

of the coordinate axes and pg is simply our initial “guess” of the point that yields the optimal
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objective function value. Each iteration defines a new search direction, £ and, if a test is passed,
this new direction replaces one of the original search directions. A description of an iteration of
the algorithm is given in Table 2.

1. For r = 1,2,..., n calculate v, so that f(p,—; + v ) is @ minimum and define p, = pr—1 +

© vk

2. Find the integer, m, 1 < m < n, so that [f(pm-1) = fpm)] is a maximum, and define
A= f(anﬁl') - f(pn).

3. Calculate. f3 = f(2pn — po), and define fi = f(po) and fo = f(pm)-

4. If either f3 > fi and/or (fy —2f2+ f3) - (fy — fo— A)? > JA(f1 ~ f3)?, use the old directions,
&1,62,...,&n for _the next iteration and use p, as the next po, otherwise,

5. Defining € = (p, — po), calculate v so that f(p, + v€) is a minimum. Use
€82, €m<1 Eme1,€m+2, &n, € as the directions and p,, + v as the starting point for the

next iteration. :

Table 2. Iteration Procedure for Powell’s Algorithm

The process -outlined above is a modification to his original method, requiring a larger num-
ber of iterations, but in [11], Powell states that is a valuable, and in some instances, essential

modification. The criterion for convergence is given in Table 3 (taken from Powell {11:158]).

1. Apply the normal procedure until an iteration causes the change in each variable to be less
that one-tenth of the required accuracy, denote the relevant point as a.

2. Increase every variable by ten times the required accuracy.

3. Apply the normal procedure until an iteration causes the change in every variable to be less
than one-tenth of the required accuracy again. Denote the resultant point as b.

4. Find the point at which the function is minimized over the line through a and b, denote this
point as c.

5. Assume ultimate convergence if the components of (a — c¢) and (b — ¢) are all less than

one-tenth the required accuracy in the corresponding variables, otherwise
6. Include the direction (a — ¢) in place of £;, and restart the procedure from Step 1.

Table 3. Criterion for Convergence of Powell’s Algorithm

In the FORTRAN code of Kuester and Mize [7] (which is the same code used by Mykytka [9]
and Mykytka and Ramberg [10]), the linear searches are performed using quadratic approximation
techniques (see Chapter 7 of [7]). 'The function is evaluated at threé different points: f(p), f(p+4¢),

and either f(p+2¢€) or f(p—¢€), depending on whether f(p) is less than or greater than f(p+q€).
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The term g represents the length of the step along the line, and p represents the current point in
the search process. These three points are used to détermine whether the function is at a local

minimum. If it is not, the three points are used to generate the “turning value,” which is calculated

using a quadratic function of the points and their respective function values. The “turning value”.

determines in which direction the search will continue.

In our particular case, we should not expéct the algorithm to venture into the “forbidden
zone.” If one of the algorithm’s quadratic dpproximation searches attempts to enter this area, the
large value for the penalty function should cause it to reverse course and head in the oppoéite
direction—back into one of the valid regions. If we oxﬂ); searched in the directions of the coordinate
axes, it would be almost impossible for the alvgorithm to begin a search in one region and conclude
in the other. However, since the search directions will most likely change as we ite;ate through the
process, it is possible that the algorithm will “switch” regions, although it appears this behavior
will occur only in cases where Powell’s Algorithm can move directly from one valid region to the

other during the course of a single quadratic approximation search.

To test this assumption, we examined several cases where our starting point was in the wrong
region, and the solution algorithm switched to the appropriate‘ region for the optimal result. In all
the cases tﬁal were analyzed, some common behaviors were observed. First of all, the algorithm
always switchea regions near the (0,0) point in the A3—A4 space. Secondly, none of the quadratic
approximation searches terminated in the forBidden zone. In all cases, one particular quadratic
approximation séarch had a starting point in the initial region and an ending point in the opposite
region. The algorithm continued its search from this new point and eventually found the optimal

solution.

We present the results of one particular case here as an examﬁle. For this analysis, we used
the FORTRAN code of Mykytka and Ramberg [10] to find the lambda parameters for the following

combination of the first four moments: x4 = 0.0, ¢ = 1.0, a3 = 0.0, oy = 6.0. This combination
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is included in the tables of Ramberg et al [13] with the following results: ‘/\i. =0, Ap = —0.1686,
A3 = —0.0802, )y = —(')‘0802. Obviously, this result lies in Region 4 of Figure 2. Two different
starting points were used. Fil;st, we used Az = Ay = —0.05, which also lies in Region 4. We then
used A3 = A4 = 0.5, which is in Region 3. The FORTRAN code yielded the tabulated values for

both cases, indicating that, in the latter case, the search switched regions.

The particular steps taken in the latter search (A3 = Ay = 0.5) are presented in figure 3.
The points in Figure 3 represent the termination points of each iteration of Powell’s Algorithm,
while the segménts connecting them represent the path taken from the initial point in Region 3
(top right-hand cofner) to the optimal point in Region 4 (lower lef(,-har;d corner). As can be seen,
the aléorithm crosses regions near the‘ (0,0) poixit, and no iteration termination points lie in the
forbidden zone. Figure 4 shows the termination points of all the‘quadratic approximation searches
used as the algorithm approached and crossed the boundary. Again, the segmen‘ts represent the
path taken by the algorithm. As we expect, none of the termination points fbr the quadratic ap-
proximation searches lie in thé forbidden region. The algorithm, thcref'ore, is obviously capable of

jumping directly from one region to the other.

4.4 Constrained Behavior of the Algorithm

Our next concern was with regard to cases where the va]ues for A3 and A4 that minimize
Eduatioﬁ 14 lie within Regions 3 or 4 and close to, or Sn, one of the limiting boundaries. Our analysis
of the algorithm suggests that it might be possible for the algorithm to “miss” the optimal value.
An example will demonstrate this. Let us assume that an iﬁeratién of Powell’s Algorithm concludes
ata poiht near the optimal value (which lies arbitrarily near one of the limiting boun_daries), but the

point does not cause the algorithm to meet the termination criteria given in Section 4.3. Another

** set of quadratic approximation searches is therefore performed. Let us further assume that the

first such search is correctly in the direction of the optimal point, but also in the direction of the
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“forbidden zone.” If the quadratic aéproximation search encounters a candidate solution either
in the “forbidden zone” or at a point where the value of the function is now mixch larger than
before, the search process will switch directions and search away from the optimal point. If this
were to happen for several successive iterations, it would seem possible for the algorithm's search
termination criteria to be met at some point other than the optimal solution--—at the “wrong point.”
Hopefully thé additional searches detailed in Steps 2-5 of Table 3 ‘will prevent this from happening,

but we cannot be sure.

The choice of starting values for A3 and A4 play a role in determining the solution at which
the algorithm will terminate. Because of this, one possible remedy to the potential problem we have
described might be to perform additional searches, using different starting points, as a check. If

these agree, then one might have more confidence that this potential problem was not encountered.

Another solution to this problem would be to decrease the step size, q, used in the quadra-
tic approximation searches. By decreasing the interval between successive search points, we can
reduce the possibility of the above situation occurring, since wé hoy fully would be less likely to
“gkip over” the optimal point or step into the “forbidden zpne." THis i3 done at a cost, however.
By decreasing the step size, we might increase the number of iteratior:s needed to generate the final

solution, which in turn will require more CPU time .o solve a particular problem.

Despite these possible solutions, we are still not certain as to what effect the current penalty
function has on the search procedure. Does its inclusion force the search algorithm into incorrect

directions? How likely is this situation to occur? This is very hard to predict.

As a way of answering these questions, we modified the FORTRAN program of Mykytka and
Ramberg [10] to allow any combination of A3 and Ay, i.e., Equation 15 is ignored. By doing this,
the algorithm will not be affected by the penalty function, although we must remember that any

combination of A3 and A4 that lies outside of Regions 3 and 4 of Figure 2 corresponds to an invalid

pdf.
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By comparing the resulting values for the constrained and unconstrained versions, we will
be able to determine. whether the current penalty function adversely affects the algorithm. If the
penalty function is affecting the algorithm, we should see a difference in the final values of A3 and

A4 generated by the two methods. If it has no effect, there should be no difference between the two

methods. We choose to examine a number of points that lie on the limiting boundaries (i.e., either

A3z or Ay equals zero), since these are the cases where the penalty function will be a factor. The
a3-a4 combinations given in Table 4 were chosen using an adapted version of the FORTRAN code
-of Mykytka and Ramberg [10]. ‘This revised version calculates the resulting az-as combination

when given specific values of A3 and A;. A summary of the results is given in Table 4.

Desired | Desired CONSTRAINED UNCONSTRAINED

as ay A A4 Min value A3 Aq Min value
-0.5656 | 2.4000° 0.4999 4.873x 1077 | 2.604x 10-% 0.5000 ~-4.237x 107% | 3.75x 1071°
-1.0498 | 3.6964 0.2500 6.577x 10~7 | 1.877x 10—9 0.2500 —6.049 % 10~% [ 33387 x 1015
0.3636 | 1.8701 1.5000 1.282x 10~° | 2.671 x 10~10 1.5000 —2.256 x 10~° 8.44 x 10~ %2
0.4500 | 2.2000 | 4.986 x 10~° 0.5812 1.554 x 10=° | 4.986 x 10~° 0.5812 1.554 x 10~%
0.0000 | 1.8000 | 1.751 x 10~7 1.0000 3.223x 1019 | 6.591 x 10- 73 1.0000 3.94x 10~
1.0498 | 3.6964 | 1.576 x 10~° 0.2500 1.093x 107 [ 1.576 x 10~F 0.2500 1.093 X 10—
0.1897 | 1.9009 | 1.491 x 10~> 0.7999 1.749 x 10~1° | 1.491 x 10™° 0.7999 1.749 x 10~1°
-0.1969 | 1.7961 [ 1.849 x 10™> 1.250 4.647x 10~ 1 1.849 x 10~° 1.250 4.647 x 10™17
* the A3 and Ay values given for the constrained search yielded o4 = 2.4001.

Table 4. Comparison of Unconstrained and Constrained Searches

As Table 4 shows, the search procedure yields almost identical solutions for the two cases. The

columns labelled “Min value” represent the sum-of-squared errors calculated using the displayed

values of A3 and A4. -

An examination of the table shows that along the A3 = 0 boundary (i.e. the last five cases of

Table 4), the two searches yield almest identical values for A3, A4, and the sum-of-squared errors.
In fact, the results are identical—except in the case where a3 = 0.0 and a4 = 1.8. In this case, the
unconstrained search yields slightly smaller values for A3 and the sum-of-squared errors than the
constrained search does. Even though this is true, the errors are still sufficiently close to zero, and

for all intents and purposes, the two A3~\4 combinations are the same. We can therefore conclude
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that the penalty function did not adversely affect the search algorithm for searches along the A3 = 0

boundary.

For all the cases along the ,\4> = 0 boundary, a smaller final objective function value is
possible using the uﬁconstrained search. The sum—of—squarea errors for both the unconstrained
and constrained cases are approximately equal to zero, but the unconstrained A3-A4 combinations
found in.Tab]e 4 are in the “forbidden zone” and thereforeb do‘ not represent valid pdfs. Although
the resulting A3-A4 combinations from the constrained searches have slightly lai‘ger isum—of—squared

errors, they still correspond to valid pdfs. For both cases, the resulting values for A4 are sufficiently

close to zero so that we can safely assume A4 = 0. Since the corresponding A3 values are almost

identical as well, the penalty function, therefore, does not adversely affect the search algorithm

near the A4 = 0 boundary either.

From the cases we have examined, we can see that the use of the current penalty function
does not present a problem. Powell’s Algorithm behaved consistently—with or without the penalty

function. Therefore, we are reasonably confident that we can eliminate the penalty function as a

source of error.

4.5 Reparamelerization

4.5.1 Derivation. Based on the results of the previous sections of this chaptér, it appears
that we can reasonably expect Powell’s Algorithm to move in the proper fashion when .faced with
our constraint. However, we can not forget that Powell’s Algorithm was expressly designed for
unconstrained function optimization. We thus can never.bé entirely sure that the algorithm will
always behave properly when faced with a constrained search-reyion. It, therefore, may be worth-

while to discuss some techniques to avoid using an unconstrained algorithm in this constrained

space.
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The first, and perhaps simplest method, is to simply ignore the constraint aitogether. for
the cases shown in Section 4.4, the values of A3 and )4 calculated using an unconstrained version
of Powell’s Algorithm were almost identical to those found using the constrained search area.
Therefore, we could search wi;ﬁ F;owell’s ‘Algorithm over an unconstrained region, and simply
discard any A3-A4 combination which ligs outside of Regions 3 or 4. On the other hand, how do \ve.
determine appropriate A3 and A4 v'al.ues for these cases? Should Qve simﬁly coﬁclude that thqse'cases
are infeasible? The use of a different starting point might be an option,.since the objective function
is known to be multi;mpdal. However, if no appropriate values result from these subsequent
searches, we would be forced exclude that particular az-a4 combination from consider?tioh, ie.,

we would conclude that that skewness—kurtosis combination can not be modeled by the GLD.

A second approach is to eliminate Powell’s Algorithm altogether and replace it with a similar
constrained algorithm. This would involve investigaiing potential replacements, and then imple-
menting a new routine. Since we are uncertain that any other algorithm would perform any better,

this could be a time-consuming, and perhaps unnecessary, process.

A third possibility is to reparameterize the GLD so-that its parameters are unconstrained.
By doing this, we can eliminate the need for the constraint, Equation 15, thereby changing the

minimization problem to one involving an unconstrained search —— a situation for which Powell’s

—- - -Algorithm was expressly designed. This last metk.od seems to hold the most promise for a quick,

easy solution to the problem.

Rt

There are several different options for reparameterizing the GLD. One of the easiest is the
following:

6 = In(\); N =e

when A;, A4 2 0, and

8 = In(=Xi); A = —e®
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when 3,24 < 0.

By changing the variables in this manner, we create an unconstrained search area. Since
e > 0 for all x, we are assured that the original parameters, Az and A4, will always have the same

sign, and we therefore do not need the Az - Ay > 0 constraint.

It should be noted that this reparameterized version will not be able to switch from one valid
region to the other, as the original sometimes did. Thi‘s is not a big sacrifice, since we know that tﬁe
original usually did not switch regions, and therefore could not rely on such behavior. If the new
search algorithm fails to achieve an acceptable salution when given a startingv value in one region,

we need simply rerun the FORTRAN program using a starting point in the opposite region.

The reparameterizzition is accomplished by altering the FORTRAN code used by Mykytka

and Ramberg [10]. The main change involves switching the ‘starting values for Az and A; to the
new, reparameterized form. After the initial A values are input by the user, they are calculated in

9 form before being sent to the FORTRAN subroutine which performs Powell’s Algorithm.

The minimization problem therefore becomes:
min Z = f(03,04) = [(@3(63, 64) — @3)* + (c4(03, 04) = as)?),

which would involve recaléulating the equations for a3 and ag, Equations 8 and 9, using the new
theta parameters—a time-consuming process. 'An alternative to this is to perform the Powell’s
Algorithm search ptocedure in the unconstrained  space, but evaluate the Z-values at each point
in the iteration using the A values that correspond to the calculated s. This is easy to accomplish,
since the FORTRA program utilizes a separate subroutine to calculate the values of as and
a4 for a given A3-A4|combination. We need simply change the s back into their respective As

“upon entering this subroutine to determine the values of a3 and a4. We therefore use the new
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theta parameter. only in the subroutine which performs Powell’s Algorithm, while the rest of the

program remains more or less the same.

In order to prove the validity of this tech.nique, the method was éhecked with a3z - a4 com-
binations documented in the tables of Ramberg et al [13]. The new method did achieve the same
v‘alues of A3 and )4, although sometimes two separate searcﬂeé were necessary in the reparaméter-
ized case3. Since the results of the two methods were identical‘, we can attempt to expand to values

beyond the tabulated range.

4.5.é Results.  This expansion was accomplished By first selecting a starting az—ay com-
bination from the tables of [13]. By choosing a a3-ay con;binbation whose A3 and )4 valugs are
already known, we assure the revised FORTRAN program ié working properly and give ourselves
a basis for comparison between the original and reparameterized versions. After the starting aj
and ay4 values are chosen, we use the reparameterized FORTRAN program to find the appropriate
Az and A¢ parameters. If the values of A3 and )4 yield a sum-of-squared error below our accept-
able tolerance (approximately 0.0001), the value of a4 is decremented by 0.2 and the FORTRAN
program is run again. When the sum-of-squzred errors exceeds our t;,olerance, we chose a different

value of a3 and restart the process.

~_ Several diﬁ’gljept values of a3 weie chosen  For the az-a4 combinations listed in the tables

of [13], the reparameterized version yielded the same A3-)4 combinations. However, the reparam-

eterized version was not able to expand beyond the tabulated values of Ramberg et al.

4.6 Conclusions

This chapter has looked extensively at our particular implementation of Powell’s Algorithm
aad our current penalty function as sources of possible limitations on the range of az-a4 combi-

nations that can be modeled using the GLD. Section 4.1 examined the inner workings of Powell’s

3This was usually because the initial guess lay in the opposite region as the final result.
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Algorithm to provide a better understanding for how the search procedure is actuéll‘y‘performed.
It also discussed the potential problems the penalty function might cause when trying to find A3-A4

solutions located near the limiting boundaries.

Section 4.4 shbwed that the penalty function does not adversely affect the search algorithm
when searching for values located near the boundaries. Table';4 shows that the results between the
constrained and unconstrained searches were consistent alohg the Az = 0 boundary, and that only
slight differences existed between the two sets of searches along the A4 = 0 boundary. Even though
.thé unconstrained search yielded lower sum-;of—squvared errors along the Ay = 0 boundary than the
cons’ rained case, the resulting /\3—/\4‘ combinations were in the “forbidden zone.” The ~results from
the constrained case along the A4 = 0 boundary were inside the feasible region, and although vthe
sum—9f~squared errors were slightly larger than the unconstrained case, they were still well below

acceptaBle tolerances.

Section 4.5 described alternatives to the current situation. In particular, it described the
tesults of a reparameterization of the A parameters to parameters that are unrestricted in sign.
These unrestricted parameters could not improve the range of a3~a4 combinations that can be

modeled using the GLD.

These results, when taken together, show that the present implementation of Powell’s Algo-

rithim does not significantly limit the GLD. Even in cases where the final A3 and A4 values lie on

(or near) the limiting boundaries, the algorithm was n(r)‘t”‘z;ﬂ'ectedb by the use of a penélty function.

The algorithm also performed just as well in an unconstrained search as it did in the constrained

case. We therefore can safely move on to investigate other issues.
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V. Graphical Analysis of the GLD -
5.1 Introduction

Mykytka used the tables in [9:87-117]" to identify the tentative range of as-a4 combinations
that are possible to model using the GLD [9:22], which is depicted here in Figure 1. He also presents -
a contour map of a3 and a4 values for combinations of A3 and A4 each restricted to the range (0, 1)

We reprint his contour map ([9:39]) here as Figure 5.

The tables used to generate Figures 1 and 5 are not necessarily complete. As we mentioned _ R
in Chapter II, the smaliest value of a4 listed in each table for a given agz does not necessarily ~.
represent the minimum value of ay that is possible for that value of a3 using the GLD.‘It is merely
the smallest value found for which the optimal solution of the objective function, Equatiop 14, ' \
was approximately zero. It may, therefore, be possible that values of the lambda parameters for
values of a4 smaller than those sholwn in the table do indeed exist, but for unknown reasons, the

FORTRAN program was unable to find them.

The research outlined in this chapter attempts to extend the boundary presented in Figure 1
using a different approach to the problem. As a result of this effort, we will discover an interesting

simplification to the equations for aa and a4 that holds under certain conditions. b%

5.2 Background

An examination of Mykytka'’s tables [9:87-117] shows that the A3 and A4 values tend to repeat
certain behaviors. A representative table is reprinted here in Table 5. As Table 5 shows, for a given
value of a3, as the value of a4 is decreased (moving from the bottom to the top of a particular
table), the corresponding A3 value starts negative, and increases towards zero. The value of A3 then

takes on a positive value, increases for a while, and then decreases towards zero. The corresponding

1These tables can also be found in Ramberg et al [13].
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* Aq values also start as negatives, increase towards zero, and become positive, but then, instead

. of decreasing towards zero, the A4 values continue to increase.

. Since this behavior is repeated for most of the tables of a3 and a4 found in [13], we hypothesize
that, for a givéq value of a3, the minimurﬁ value of a4 possible using the GLD will occur when
Xa = 0. |

Further évidence of this can be seen in Figure 5. This figure shows a subset of the values of
a3 and a4 that result from given combinations of Az3-A4. We can see that for a given value of a3,
the minimum a4 occurs when‘ A3 = 0. On the other hand, Figure 5 only shows a small (although
important) subset of the possible values of A3 and Aq, i.e. those ‘b‘etw.’een zero and 1, so we might

witness different behavior for value of A3 and A4 outside of this range.

As a first step in attempting to prove this hypothesis, we will attempt to expand Figure 5 by
exploring regions'outside of the range 0 < Az, Ay < 1. By extensively examining these regions, we

will hopefully find at least a graphical verification of our assumption.

It should be noted here that as we extend the i'ange of points covered, we will most likely
encounter “less-useful” (or, at least, less intuitively-appealing) pdfs. The shaded region of Figure
1, which signifies the range of a3—a4 combinations that can Le modeled using the GLD, already

contains most of the comménly-used pdfs. The only group of pdfs not fully covered are those that

can be represented by the U~ and J-shaped beta distributions. An examination of the GLD’s pdf,

Equation 2.1, shows that; as Ag is increased above one, the resulting pdf will have a non-zero (i.e.
positive) value at its left endpoint (i.e., f(z) > 0 at the lower limit of the Aistribution’s range).
Similarly, as A4 is increased beyond one, the resulting function will have a non-zero value at its right
endpoint. Since mosf of the U- and J-shaped beta distributions pdf’s exhibit similar behavior, we
suspect that by extending the range beyond 0 < A3, A4 < 1, we will encounter as-a4 combinations

characteristic of these distributions.
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Figure 5. Selected Contours of a3(A3,A4) and a4(A3,A4) in Region 3
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A3 = 0.30
. \
Al Lay 1 LAM 2 Layg 3 Lin &
2.0 =1,550 «2660 .0000 . 7020
2.2 =-1.164 <2755 .0380 5556 . _—
20“ e 871 02733 . 0695 .33‘-‘8 ) ) e
2.6 -. 642 .2586 .0911 «3324 . : e
2.8 -. 874 2323 .0983 2895 Lo
3.0 -.362 1991 0925 .1859
3.2 ~.288 . 1641 .0796 = .1377
3.4 -,239 .1298 .0680 .1003
3.6 -. 208 .0973 .0u481 .07048
3.8 -.179  .067T1  .0330  .0860
8.0 ~.16Q . .0389  .0190  .0255 _
4.3 -.138 .0789+ .0380+  ,0889+
8.8 -.131 -,0116 -.5554+ =-,7057+
“05 -0129 -00231 e 0110 ‘00139
8.6 -3121 -‘03“3 ‘00163 -.0203 )
) 608 -0113 '.055“ -,0260 ‘00319 = ;o
5.0 -.105 -.0752 =.0350 ~-.0423 . /
842 -.100 -.0939 -, 0432 ~-,0517 /
5.8 -.09“ -0111a -10508 -00601 //
5.6 -.089 ~-.1279 -.0578 ~.,0678 .
5.8 e 085 -01“35 ‘QOGAB ‘.0748 ; R
6.0 -.081 -,1582 -,0703 ~-.0812 /
6.2 -, 078 ~-.1722 -.0759 ~-.0872 ~
6.8 -.075 =-,1854 -.0811 -.0927 N
6.6 -0072 '.1979 e 0860 -o°g77 . ‘ /
6.8 -,069 -,2100 -.0906 ~.1025 ' S
7.0 -0067 -.221“ -009“9 -01069 . .\\
' ;-2 -.065 =-.2325 -.0990 -. 1111 \
-8

-.063 -.2027 =-.1028 ~-.1149 o .

7.6 -,061 ‘02528 -.7064 -,1186

7.8 -,060 -.2623 -.1098 -,1220

8.0 -, 058 -=.2T6 -.1131 -.1253 .
8.2 -.056 =-.2805 -.1162 ~-.1288 .
8.8 -.058 -.2889 -.1191 -.1313 .
8.6 -005“ -02971 -. 1219 -,1381

8.8 -,053 -.3050 ~-.1246 -.1367

9.0 -,052 =.,3125° ~,1271 ~,1392 .
9.2 ~e 051 --3197 . -.1295 -01“16 /.//”

~ lable 5. Sample Table of az—a4 Combinations: a3 =0.3,2.02> a4 > 9.2
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5.8 A Simplification of the Equations for a3 and a4

A nice sidelight to our hypothesis is that when Az = 0, the equations for a3 and a4 (Equations

8 and 9) can be written in a much simblor form. We make use of the fact that

B(1,a) = B(a,1) = %%%Z - %1

so that when A3 = 0, the equations for the intermediate parameters A, B,C, and D (given by

Equations 10 through 13) can be reduced to:

B = 1-28(1,14\)+

2
(1 +24)(1 4+ 229)

1
1420,

C = 1-38(1,14 M) +38(1,142)\) -

623 .
(14 Ag)(1+ 224)(1 + 3Xy)

1
1+3/\4

D = 1—4le+A0+GML1+2M)—4le+3M)+——L—
144X,
2424

(14 A0)(1 4+ 224)(1 + 3A4)(1 +4Aq)

The formulas for a3 and a4 become:

201 4+ A)V1+ 20

1432,
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201 4 224)(5 + 324 + 1623 + 1223)
(14 32)(1 +4)y)

g =

Note that the equations for a3 and a4 are now functions of a single variable, A;. Since we have two
equations in a single unknown, we should be able to solve for A4 when given a specific a3 value. If
our hypothesis is valid, we can then use this value of A4 to find the minimum possible value of a4

for the given value of a3 and we can therefore establish a lcwer limit for the kurtosis.

Because of the symmetry of Az and A4 in the equations for A, B, C, and D, we also found

that, for the case where Ay = 0, the equation for @4 remains the same (with, of course, A3 replacing

As), while that for a3 becomes the negative of the Az = 0 case, i.e.:

_ 2(1 + /\3)\/1 + 23

14323

as

2(1 4+ 2X3)(5 + 323 + 1623 + 1213)
(14 323)(1 +423)

5.4 Procedure

A FORTRAN program was written which calculates the az-a4 ;/alues which correspond to
a specified combination of A3 and Ay. The program was adapted from the subroutine in the
FORTRAN code of Mykytka and Ramberg {10] that accorﬁplished the same task. This program
will he a valuable tool for subsequent analysis, since we will be able to restrict our attention to
only valid a3-a4 combinations. Instead of choosing a combination of skewness and kurtosis and
running the original FORTRAN program (as Mykytka [9] did)—hoping the GLD can find a A3-A4
combination to replicate them—we will do something much easier. By setting the values for A3
and A4 first, we know that the resulting a3 and a4bva.lues must be within the GLD’s range (as long

as only A3-A4 combinations in Regions 3 and 4 are used). By checking a large enough subset of
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Az-)A4 combinations, we hopefully will be able to get a better idea of the range of possible az-aq

combinations that can be modeled using the GLD.

5.9 Results

We originally started by re-examining the range 0 5 A3, A¢ < 1. Since an iﬁﬁ‘nite number of
different A;,.—,M combinatiéns are possible over this range, we obviously can only look at a small
fraction of the total number of values. Figure 6 shows the combinations of a3 and a4 that result
when A3 and A4 are each iterated over this rangé in steps of 0.01 each.2 We can note several
interesting details from Figure 6. First of all, the as-a4 combinations are symmetric around the
a3 = 0 axis. This is expected, since Equations 8 and 9 show that when the values of A3 and Ay
are interchanged, the resulting distribution has‘ the same a4 value, but has a a3 value that is the

negative of the original. Therefore, we should expect this type of symmetric behavior.

Figure 6 also shows that there is an apparent lower limit on the possible a4 values, but that
the minimum possible a4 value for any particular case depends on the associated value of a3. For
example, we can see that a minimum a4 value of approximately 1.8 is observed, but only when

a3 = 0. When a3 = 1, the minimum observed value of a4 is only 3.5,

Figure 7 shows the az-a4 combinations that result when we set A3 = 0 and iterate A4 over
the range in 0.01 intervals. Comparing Figures 6 and 7 shows that the minimum a4 value for a
given value of a3 (a3 > 0) does indeed occur when A3 = 0. Figure 8 shows the results when we set
A4 = 0 and vary the value of A3 over the same range. Obviously, when a3z < 0, the minimum value
of a4 (for a given value of a3) occurs when A4 = 0, as we would expect. The two figures also show

that when a3 = 0, setting either Az or A4 to zero results in the\same minimum value of a4.

So, over our limited range of values, it seems that our hypothesis is valid. However, what

happens when we iterate over the same range in intervals smaller than 0.01? Does our hypothesis

2We disregard the combination A3 = A4 = O for this case, as well as all future cases, since it yields a GLD with
an invalid pdf.
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Figure 6. az—a4 Combinations for 0 < Az, A4 < 1

still hold? To answer this question, we studied cases where the step size was set as low as
0.0001. These additional points, when added fo Figure 6, merely “filled in” the range above our
previous limits. Setting Az (or A4, dépending on the range of interest) equal to zero still gave the
. smallest o4 value for a given value of a3.
Our next step was to attempt to e?cpand our hypothesis to regions beyond the range 0 <
A3, A4 < 1. Although we could not inspect every possible A3-A4 combination, we tried to examine -

typical cases over the entire range of possibie values.
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Figure 7. az-a4 Combinations for A3 = 0,0< A4 <1

To do this, we first needed to determine maximum values for A3 and A4. The lower bound
on /\3 and A4 had already been given by Equation 5, min(A3, Ay) > —%. However;‘there were
no restrictions on the largest possible values these parameters could have. Through trial and
error, a working upper bound of Az, Ay € 40 was proposed. Although specific combinations of A3
and A4 exist where one of the parameters has a value greater than 40, we wished to study those
combinations where we can vary both variables over their entire ranges without encountering any
undefined az—a4 combinations. We do not expect that we are dismissing a large number of A3-A4

combinations by using this assumption, and it gives us an upper bound with which to work.

Figure 9 shows the resulting az—a4 combinations when A3 and A4 were varied over the range
0< A3, Ay <40 usi;lg-a. step size of 1.0. Due to limitations in the capacity of our plotting program,

this larger step size was needed to plot this entire range. We expect that as we saw before, as
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Figure 8. a3~a4 Combinations for0 < A3 < 1,1 =0

the étep size is decreased (thereby increasing the total number of A3-A4 combinations plotted),

the new points will be located in positions that will cause the open area above the parabolic curve

to be “filled in.” : i} v /‘
Figures 10 and 11 show the resulting as-a4 combinations when we set one of the parameters

equal to zero and varied the other over tﬁe range from zero to 40, using a step size of 0.01. Figure

10 set A3 = 0 and varied A4 over this range, while Figure 11 set Ay = 0 and varied A;.

By comparing Figures 10 and 11 to the complete set of points in Figure 9, we can see that

these two subsets of values do indeed encompass the minimum a4 values for all of the a3 values. ' BEITS

Figure 12 shows the results of Figures 10 and 11 together on the same set of axes, , o,

By examining these two subsets of values in Figure 12 together, it is obvious that over a3’s

negative range, setting A3 = 0 produces the corresponding minimum ey value, while over az’s E N
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Figure 9. az—a4 Combinations for 0 < A3, A4 < 40
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positive range, setting Ay = 0 produces the minimum a4 value—the “opposite” of our results from

the earlier case, where A3 and A4 were restricted to values between zero and one.

Figure 13 shows the area where the two sets of points cross in more detail. Since Figure 12

includes a subset of the range of values shown in Figures 7 and 8, we can see where these earlier
points lie in our extended range. Obviously, the points in Figure 7 correspond to.the A3 = 0 points
found above the A4 = 0 curve in Figure 12 (in the range where a3 > 0). Similarly, the points found

in Figure 8 correspond to the A4 =0 points found above the A3 =0 péinlts in Figure 12 (a3 < 0).

An examination of the A\3-A4 combinations used to generate Figure 13 shows that these “upper”
boints correspond to the cases where the non-zero parameter had a value less than 1.0. The two
points shown at a3 = 0 in Figure 12 correspond to the pairs A3 = 0, Ay = 1 and A3 = 1,24 = 0. As

the non-zero parameter is increased above 1.0, the “lower” part of the respective curve is formed.

As it is decreased below 1.0,‘ the “upper” part of the curve is generated.

It therefore appears that the sets of values given in Figures 7 and 8 are not the minimum
a4 values that are possible using the GLD. By setting either A3 or A4 equal to zero (depending on

whether a negative or positive value of a3, respectively, is desired) and allowing the other to take

on values above one, we can attain smaller values of a4 for the same values of aj.
To this point in our analysis, we have only examined A3-A4 combinations in Region 3. How-

ever, there are also valid A3-)A4 combinations in Region 4. What values of a3z and a4 do these
combinations yield?

Figure 14 shows the a3-a4 combinations that result when Az and A4 are varied over the range
—.25 < A3, A4 < 0 using a step size of 0.01. We can see that althougl the range of a3 is similar
to the previous cases, the resulting values of oy are much larger. Figure 15 shows only the lower

portion of this range, using a smaller step size (thereby showing more points). Obviously, none of
these A3~A4 combinations yield a a4 value lower than those we have already found, but instead “fill

in” the upper range of az—a,4 combinations not covered by the A3-A4 combinations of Region 4.
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Figure 14. a3-a4 Combinations for —.25 < A3,A4 < 0
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5.6 Conclusions

Our original hypothesis was that for a given value of a3, the minimum possible value of a4
that the GLD can produce occurs when A3 = 0. When we examined the range 0 < A3, A3 < 1,
it appeared that this hypothesis was at least partly true. However, \;'hen we examined Az—A4
combinations outside of this range, we noticed that a lower value of a4 could be found for the same

Q3.

We must therefore revise our original hypothesis. A more reasonable one seems to be that for
a given non-negative value of a3, the minimum &4 value that the GLD can produce occurs when

Ay =0 and A3 > 1. If a3 is negative, the minimum a4 value occurs when A3 = 0 and A4 > 1.

If we look at the sample table given in Figure 5, we can most likely “improve” on its smallest '
a4 value. We expect that as we decrease the value of ay below the smallest tabulated value, the
corresponding A3 values should decrease to zero, and then rise again to values above 1.0 at its
true minimum. The corresponding values of A4 should decreases to zero, and become zero for the

minimum possible a4. This will definitely increase the GLD’s present range.

Although we have only looked at only a small subset of the A3—-A4 combinations, we can be
confident of our results. It was mentioned previously that we needed to use a fairly large step size
in some of our analysis. When this step size was decreased, we did not witness any unexpected
behavior. Instead, these additional point simply fill in the a3-a4 space above our minimum a4
curve. If we were to use an infinitesimally small increment between A3 and A4 values, we expect to

see a solid region above the minimum ay4 line, as shown by Figure 16.

As a final result, Figure 17 shows both the original coverage region of the GLD (from Figure
1) and our newly-covered az-a4 combinations {denoted by the darker shaded region). Although

we can not reach the boundary of the Impossible Area, we can indeed cover a larger portion.
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V1. Ezamination of Uncovered az-ay Range

"

The results of Chapter V showed that we can extend the present range of a3—ay4 combinations
that the GLD can model. However, as Figure 17 shows, we are still not able to to cover the entire
spectrum of possible &3—04 combinations. What do these “uqco‘vergd" distributions look like'? Is it
even worthwhile to trly to include them? This chapter will try to answer these qﬁestions by looking

at a few specific cases that lie outside of the GLD’s range.

From Figure 17, we can see that the as-a4 combinations not covered by the GLD can be
modeled by U- or J-shaped beta distributions. Bury [1] gives the following equations for the

skewness and kurtosis (what he calls the first and second shapevfact.ors) of the two-parameier beta

distribution

o - 258 R
(17)
s a+b+1)[2(a-b)*+abla+b+ 2)]’ ‘ 18)

Cabla+b+2)(a+b-+3)

where a and b represent the two -beta distribution parameters. Since we know what values of

skewness and kurtosis we desire, we neea simply solve these two equations to find the appropriate

values for a and b. We can then plot the resulting distribution functions using the equation for the -

beta pdf,

f(z) = %)%’"'r(l —a)ft 0<z<l. (19)

We will look at the four az-a4 combinations shown (along with their respective beta param-
-eters, a and b) in Table 6. By looking at Figure 17, we can see that these cases correspond to
two U-shaped and two J-shaped beta distributions that can not be duplicated using the GLD.

Although we are only looking at a small number of cases, we should at least get a feel for the
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Case | ag ay a b
1 | V05 0.28 | 0.578
2 V3 5 0.19 | 1.01
3 2 | 6250179 1.185
4 V3 | 43 [ 0.048 | 0.233

Table 6. Four Uncovered a3—-a4 Combinations

type of shapes we can expect from other pdfs that fall into these regions. Figures 18 through 21

show the four resulting pdfs. Note that these four pdfs seem to be “extreme” examples of beta

distributions—interesting, but perhaps not very useful.
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~--= Figure-18. Distribution Function for Case 1
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To see this point, recall that one of our reasons for wanting to expand the GLD’s range was

to make it more useful as a simulation tool. By expanding its range, we can model a wider range

of as~a4 combinations, and hence a wider range of potential empirical data sets. However, we

must also look at the situation realistically. In ordinary simulations, we do not expect to see many

empirical data sets that resemble the pdfs shown in Figures 18 through 21.
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Figure 21. Distribution Function for Case 4

Is it worthwhile to attempt to expand the GLD to cover the remainder of these az-ay4 com-
binations? The answer tc that question seems like it would depend on whom you asked. While
mathematicians might be dismayed that we can not cover all the possible situations, simulation
users might be satisfied that they can model such a wide range of different distributions using a
single pdf. We tend to fall into the latter group. It is slightly disappointing that we have not been
able to expand the GLD to ‘the boundary of the Impossible Region of Figure 17, but we are happy
with what we have done. The range of distributions we cannot model using the GLD seems to be
“extreme” cases that will not be of much practical use. Therefore, our efforts can be considered,

at least, a partial success.
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VII. L-Moments for the GLD

7.1 Introduction

In determining the appropriate values for the fgur GLD parameters, the method of moments is
commonly used. There are several reasons for this. First, the concept of the mon;ents is something
that can be understood by the majority of users. Second, the first four moments (mean, variance,
skewness, and kurtosis, respectively) of a_.ipdf or empirical data set can usualiy be calculated fairly
easily. Third, since Ramberg and Schmeiser [12] developéd equations for the first four moments as
functions of the four GLD parameters, we can “match” mnst any distribl;tion or data set using the

GLD by simply determining appropriate values for the four A parameters.

~Unfoftunately, there are some problems with this approach. As we have already mentioned,

the GLD cannot “mimic” all possible combinations of skewness and kurtosis. Although it can

represent most of the commonly-uséd pdfs, there are some it -annot. Secondly, in empirical data

- sets, there can be a large variability in the higher-order moments, i.e. the skewness and kurtosis.

Since these moments are based on the third and fourth powers of the difference between each

sample point and the mean, one abnormal data point can create a large change in these measures,

especially when the sample daﬁa set is relatively small. It may well be the case that this outlying
value is important to the overall nature of the underlying distribut-ipn, but often such occurrences
are simél); bad luck in sampling. D -
Since the GLD relies on the given values of skewness and kurtosis so heavily, the res_ulting
distribution can be significantly altered if incorrect values are used. It therefore may be worthwhile
to investigate other methods for obtaining the values of the GLD parameteré. Hosking [3] has
presented an alternative to the use of moments, that of L-fnoments. These L—morﬁents are based

on order statistics and are supposedly not as susceptible to abnormal data points as are the measures

of skewness and kurtosis.

58




7.2 Derivation

Hosking defines the first four L-moments via:

A= jﬁlli(p)dp

Ay = /0l R(p)-(2p - l)dp

A3 = /0l R(p)- (6p® — 6p+ 1)dp

Ay = /01 R(p)- (20p® — 30p” + 12p + 1)dp

where R(p) is simply the percentile function.

(20)
(21)
(22)

(23)

As with the commonly-used measures of skewness and kurtosis, Hosking [3] chooses to define

the two higher order moments as dimensionless ratios relative to the second order moment:

= A
T3 = Az
= A
T4 = Az

We opt to follow that convention.

The four L-moments have similar roles to the typical moments. Since the first L-moment

is simply the expected value of the distribution, it is identical to the mean of the dist-ibution.

Also, a symmetric distribution will have 73 = 0, just as ag = 0 for symmetric distributions using

conventional moments. According to Hosking, however, r3 and 74 are more stable measnres than

a3 and a4, and therefore better estimates for empirical data.

For the GLD, the L-moment equations become:

= —Ag=As
A= M+ iD0TTD
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S ‘ o N / ot
,’ ~ , \
:
’
Ao = A A+ FA(Aa+ 1) Aa+2) (zr) :
2= XN A+ A DI F2) 0 ’
- //
ro=  AIANOEDAEDAA3)-(A]= A+ D $213 4 43) (26) ST
= a3 +3)DGGH DD 2B+ 1D +3)] “ /
o= (23-3234 22300 A DDA A3 A+ D033 420 A+ DA+ A3 +3) A +4) (27) -
1= (A3+3)(A3+4) (A +3) A+ A (A + DA+ 2)+ A A+ T (A3 4 2)] :
//
[
A complete derivation of these equations can be found in appendix A.
7.3 Usefulness of L-Moments
?
Although Equations 24 through 27 look complicated, note that they are all polynomials. - '
Unlike the GLD equations (Equations 6 through 9) based on typical moments, these have no beta ot
functions. Siuce computerized solution algorithms for systems of polynomial equations are fairly s
common and easily adaptable, it may be easier to deterinine the values of the GLD parameters v
using L-moments instead. We haveé already noted that according to Hosking [3], 73 and 4 are more T
o
“stable” ieasures than the currently used moments, az and a4. Perhaps the method of moments /
could be implemented with L-moments rather than the more-familiar typica! (standard) moments o
\:.\Y, |
. . R /, '
7.4 (The Problem of) Computing L-moments . .. _ A
There are some problems with L-moments as well. The “sample” L-morments are based on ,_74
order statistics:
o
A= E(X) L
I
1 v R
Ay = 3E(X22 — X12) i
. i
Ag= 1E(X33 — 2X23 + X1.3) /
‘!
!"
h
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A= L1E(X44-3X34+3X24 — X14),

where X, denotes the a'® order statistic in a group of size b. A review of the available litera-
ture does not show how to adapt these measures to samples of a larger size. Therefore, we have

hypothesized two ways of doing this.

First, we could define each measure as the average of the results of every possible subset of

the proper size within the data set. For example, in calculating the value Ay for a sample of size

10
n = 10, we would calculate the value of A, for all <2) = 45 possible combinations and average

the results. This is obviously an unacceptable option since the amount of work required quickly

becomes prohibitive, even for relatively small data sets.
!

I
A s;econd possible method would be to derive the empirical cumulative distribution function

of the data set, and create finite summations to approximate Equations 21 through 23. This seems

to be thé more reasonable approach, since the amounﬁ of work required is much less than that
involved ;n calculating each possible combination. If an eﬁ'ective means of calculating sample L-
moments?can be found, we can use Equations 24 through 27 in place of the more complicated GLD
moment :Equations to estimate appropriate values for the A;. Relative computational ease may

!
simplify {urther research into the GLD.

|

Unfortunate]y, the quality of these cstimators remains to be seen. At this point, we have
no way of knowing if either method will produce “good” estimates (unbiased, minimum variance,
etc.). To test the consistency of these approaches, it might be reasonable to conduct test cases with

known pdfs to compute:

1. The theoretical L-moments—Hosking [4] presents these for many of the commonly-used pdfs.
2. An exhaustive enumeration—take samples of various sizes from the pdfs and compute.
3. The empirical cdf of those same samples.

and compare the results.
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VIII. Conclusions/Suggestions for Future Research

This thesis was undertaken to study the Generalized Lambda Distribution in depth, focusing
particularly on the reasons behind the limitation on the range of skewness-kurtosis combinations
it can assume. Our goal was to expand this range so that the GLD would be capalﬂ‘e of modeling
any possible probability density function or empirical data set. Although we were ablc'tkp expaind

the GLD’s range beyond its previous limits, we fell short of our goal of total coverage..

What is the problem? It could be a number of things. Other general-purpose xﬁ_et}mds for
fitting distributions to data (such as the Johnson and Pearson systems) must utilize more than
one functional form for the distribution’s pdf to cover the ;:ntire range of values shown in Figure
1. Perhaps this is the case for the GLD as well. We also could be faced with a theorebticsal limit on

possible combinations of a3 and a4 that can be modeled using the GLD in its present form

Further, since we use the method of moments to determine the appropriate values of the
four GLD parameters, we limit their range to regions where the first four moments are defined.
This thesis has given a description of an alternative to the method of moments (L-moments), and
other methods for det‘ermining the parameter values have been documented. Perhaps one of fhese

approachés may yield new GLD forms that the method of moments cannot.

The ‘limit may be the result of analytical considerations, as weil. Due to the complexity of

-the GLD, Qe can not solve for the paia.m&er values in an easy fashion;.instead we must_rely on
_computeri'zed searches to determine appropriate lambda values. The eﬁuations for a3 and a4, (8)
and (9), both require evaluation of beta functions. The beta functions in turn require evaluation

of gamma funct.ions. Since finding exact values for the gamma function is not computationally

tractable, we are instead forced to use approximation techniques. These approximations might be

a source of error, but we do not believe so. However, if it is, hbpefully the L-moment method,

which uses only polynomials to determine the parameter values, will yield better results.
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Over the course of our research, we have learned a great deal more about the GLD. We have
been able, at least experimentally, to establish a lower limit on the values of kurtosis that the ‘GLD
can attain, given a specific skewness. We also have a more thorough understanding of how Powell’s
Algorithm works and ﬁow it functions when faced with our penalty function. We saw that neither

“ the penalty function, nor the constrained region of viable A3-Ay values, had an effect on the the

algorithm’s searching process.
g

Where do we go from here? As a first step, the concept of L-moments is worth a longer
look. At present, the literature on L-moments is limited. ‘In particular, we do not know how to
effectively determine the L-moments of an empirical data set. We discussed two of our own ideas
for doing this in Chapter VII. Using L-moments, we can find the values of the four GLD parameters
simply by solving a system of polynomials rather than using a non-linear function minimization
required to match the standard moments. Hopefully their use can expand the GLD’s range even
further. L--moments are not widely known, however, and we need more information about them to

determine their usefulness.

In summary, though, we rﬁust remember that even with its present restrictions, the GLD is
still an extremely powerful tool for simulation studies. It allows the user to model a wide range
of pdfs and empirical data sets, simply using the GLD (with appropriate parameter values) and a
pseudo-random uniform random variable generator. When modeling an empirical data set, instead
of facing a tough decision between two (or several) competing pdfs, we can usually match the first

four moments of the data set ezactly using the GLD—a much easier choice.
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Appendiz A. L-Momecnt Paiameter Derivations

In this Appendix. we will present an in-depth derivation of the four L-moments, Ay, Ay, 73,

and 74 for the Generalized Lambda Distribution.

Hosking {3] presents the following formulas for generating the four L-moments from any

distribution:

1
no= [ ReY )
1 . B
re = [ R@)-Cp- 1 | (29)
1
A = -/oR(P)'(6P2-6P+1)dP ' (30)
A‘,l = ‘/OIR(p)-(20P3—30p2+12p—l)dp (31)

where R(p) is the distribution’s corresponding percentile function.

For Ay, we have:

Moo= fy k@ - (-] dp

<o (55 4 )

As+l A+l p=0

- 0 S (NS SR S
- ’\l + Az [/\s+l 1\4+1]

which is equivalent to:
Ag—=A3

A2(Az + 1) (A4 1) (32)

M=+

For As:

Ar =f [t &0 - -pP)] (2p - 1)

= fy [22p= M1+ £ @954 — 0 — 2001 - PP + (1 = pP)] dp
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_ [axp? | (aprat?  prsdl (j_p)hatr P! 2 A
= [ A e v ( Y A v H D PR p=0 5 Jo p(1=p)*edp.

We now make use of the fact:

1 ‘
/ "(1-z)"dr=f(n+1,m+1) . - (33)
| 0
|
| " to get:
1 2 1 1
A== A + — - —-26(2, 4+ 1)} .
2 ! ]+/\2[/\3+2 /\3+1+/\4+1 A2+ 1)
But,
: I(2)l'(a) 1
2 = 2) = = 34
A(2,a) = H(a,2) La+2) ala+1) (34)
so
1 2 1 1 2 ]
Ay = — —_ + - .
A2 [ A3+ 2 /\3+l Ag+1 (/\4+1)(/\4+2)
This is equivalent to:
A = 254 DAHDA D =AM+ )+ DA +2)4+ A3+ ) (A3 4+2)(Aa+2)—-2( A3+ 1) 342) l (35)
2 = A (A F DA+ 2)(Aa+1)(Ae+2)
— A D A+ +HA(A3+1)(A342)
Az = 3)\,(,\,-q-1)()\;+2)(,\.+1)()\.«1-32) (36)
For Aa: \

1
pso= [ [ - -0 @ e e

1
1
/o [6,\11)2 —6Mp+ A + ;;(61)*’“ — 6% 4 p* — 6p*(1 - p) + 6p(1 — p)* - (1 - p)“)] dp

6M1p>  6)p°
[ O

p=1

p=0
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1 /6p*s+3  gpra+? As+1 1 — p)ratl p=1
+[ (p d P (-p) )] ~6A(3. Mg + 1)+ 68(2, A + 1)

PV G P R Vori R W Ry

p=0

Using Equation 34 and the fact that:

[(3)I(a) 2 ‘
3 = 3) = = , 37
A3 =P03) = Ta33) " st D@+ D) (7)
* this equation is equivalent to:
Az= . T 20 = 3h 4+ A
4Ll & 4 _1__ 12 + 6 - _1_]
Az [Aa+3 0 A2 T Ayl (A4+W('\4+2)(4\4+35 G +DAF2) A4l
6
As= 5; ['?6?3‘ -t (A.+1)f,\.§n)(x.+3) Sl evesy oves) K‘ﬁ] (38)
Combining the first three terms of Equation 38 yields:
6)3 + 18X3+ 12— 603 — 24X3 — 18+ A3 4 5A3 +6 _ M- (39)
(A3 + 1)(Aa+2)(A3 + 3) T Qe+ (A3 +2)(A3+3) )
Combining the last three terms of Equation 38 yields:
—124+6(As -+ 3) — (A + 2N +3) _ -2+ (10)
(A4 1A +2) (A +3) (Aa+1)(Aa +2)(Xg + 3)
We then combine the results of Equations 39 and 40 to get:
A _ 1 A2y _ Py }
3 =3 |G D0 043~ Gat DA+ T3)
= O3=A)(Ae+1)(A4+2)(Aa43)~(A1=2g)(As+ )X 3+2)(A3+3) (41)
- Ag(/\;-}-l)(4\3+2)(A3+3)(A4+1)(A4+2)(¢\4+3)
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We use Equations 36 and 41 to derive the equation for m5:

A3

T3 = —=
As

A1=2)+D42) A +3)= (A3 2 D(As+1)(As+2) (A3 +3)
)\7(/\3+1)(f\3+:’)(/\3+3)(/\4+1)(’\4‘+'-’)(/\4+3)

T3 =

. A(Aa+ DA +2) A+ 10 A42)
1\3(/\1+1)(A4+2)+)\4(’\3+‘)(A3+2)

o= QEmAQEDOE DA 43) =M= A+ DA+ 2)(A343)
3= R+ )P+ DA+ 21+ A (A + DA+ 2)]

For Ag: -

Ay = fo1 [,\1 + ;1; S(prc - (1 - p)"‘)] \<0p® — 30p® + 12p — 1)dp

fol 20/\1})3 - 30/\1[)2 + 12/\1]7 - A
+:l_2_(20pl\a+3 - 30ph+2 + 12ph+1 - P'\°

~20p%(1 — p)** + 30p%(1 — p)** — 12p(1 ~ p)*+) + (1 - p)™)dp

=1
200;p  30,p° 24,97 P
[ \pt _ 30hp 41 1 L Y -

gL 200204 goptads | gaprsta pisht | (oppiebi)PEl
Az Aa+4 As+3 Aa+2 As+1 Ag+l

p=0

+5- [~208(4, s + 1) + 308(3, A + 1) — 122(2, A + 1)]

We use Equations 34, 37 and the fact that:

I'(4)F(a) _ 6
T(a+4)  a(a+1)(a+2)(a+3)

B4, u) — S{u,4) =

to find an equivalent expression.
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Ag= 5A; — 10X, +6X = A + [A324 b e v ‘r’u]’

+L (= 120 . + 60 _ 12 4 ]
Az NEDDGH2N A4 +3) (A +4) “‘,“)()““)“‘*3) AFD(A+D) Ae+1

- 1[0 _ s o 12 1
Ag = x5 [A;+4 T3 T X33 T Xadd

+L |- 120 + 60 _ 12 + L
3 | T R ) 0T d) T (et D+ DA +3) — (a+D)(Xa+2) T XiF1

Combining the first four terms of Equation 43 yields:

£ [20(A3 + 1)(As + 2)(A3 + 3) - 30(As + 1)(Aa + 2)(As + 4)]

+ 501200 + 1)(Aa + 3)(As +4) — (Az + 2)(Aa + 3)(As +4)]
where D represents the common denominator:
D= (A +1)(Aa+2)(As+3)(Aa+4).

This is equivalent to:
A3 -3A2+2);
A3+ DAz + 2P +3)(Aa+4)

Combining the last four terms of Equation 43 yields:

=1204+60(A44+4)~12(24+3)(Ae+4)+ (A +2)(A4+3)(Aa+4)
(et D4 +2)(34+3)(A4+9)

A3-322422,
- Qe DAa+2)(24+3)(Ae+4)
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Taking Equations 44 and 45 together yields:

Ay = 1 A3-32%422, + Ad-3a%424,
4= Az A3+ As+2)(A3+3)(Aa+4) (»\4+1)(/\4+2)(,\.+3){A4+4)

Aa(As+1)(Aa+2)(Aa+3)(Aa+4)(Aa+1)(Ae+2)(Ae+3) (A4 +4)

! Using Equations 36 and 46, we find:

2
[
2B

(A3-3234223)( A4+ DA+ 2)(Ae 43D +4)+(A3=32T+2X (A s+ 1) A3 +2)(A3+3)(A3+4)
A2(/\3+1)(>\:\-0-2)(/\::'H‘))(>§a+‘1)()\4'0'1)(f\4+2)(/‘\4+3)(/\4+4)

A DA+ (A +1) (A4 42)
O F DA+ 20123+ 542)

4= (A3 +3)(As+4) (A +3) A+ )R (A +1)(Ae+2)+ A4 (R +1) (A3 +2)]
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Ag= (A3-3234229) A+ DO+ DA+ A+ D+(A] - 3274200 (A + 1A+ 2 Aa+3)(Aa +4)

(A3=32242205)00+ DA+ 2R+ 3 A +4)+(A3-307+2X) (A3 +1)(A3+2)(A3+3)(Aa+4)
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using an unconstrained search to find the parameters subject to a constraint that
ensures that the resulting pdf is valid. We also develop a reparameterization of the
GLD that creates an unconstrained search region. This does not expand the range of
distributions the GLD can mimic.

We then use an extensive numerical investigation to examine the set of distributions
that can be obtained from combinations of the GLD parameters. This examination allcws
us to expand the range of pdfs that the GLD can model. We also inspect some pdfs
that cannot be modeled using the GLD, as well as present an alternative to the method
of moments for determining parameter values, using the concept of L-moments.
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